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Abstract. In this paper, we study the generalization ability of a simple perceptron which
learns an unrealizable Boolean function represented by a perceptron with a non-monotonic
transfer function of reversed-wedge type. This type of non-monotonic perceptron is considered
as a variant of multilayer perceptron and is parametrized by a single ‘wedge’ parametera.
Reflecting the non-monotonic nature of the target function, a discontinuous transition from the
poor generalization phase to the good generalization phase is observed in the learning curve for
intermediate values ofa. We also find that asymptotic learning curves are classified into the
following two categories depending ona. For largea, the learning curve obeys a power law
with exponent 1. On the other hand, a power law with exponent2

3 is obtained for smalla.
Although these two exponents are obtained from unstable replica symmetric solutions by using
the replica method, they are consistent with the results obtainable without using the replica
method in a low-dimensional version of this learning problem. This suggests that our results
are good approximations even if they are not exact.

1. Introduction

Recently, the problem of learning from examples has been an attractive topic in statistical
mechanics [1]. In order to investigate how well a generalization ability can be acquired
by learning, learning curves of generalization errorε, which is a probability of making a
false prediction for a novel example, were calculated for various types of networks by using
the replica method. These studies revealed the following feature of learning. When the
number of examplesP is small relative to that of weight parametersN , learning curves
exhibit rich behaviours depending on the architectures of networks. In contrast, there are
some universal properties in the asymptotic region whereα = P/N is large. For example,
in the case where a teacher’s relation is realizable and there is no noise, learning curves of
Boolean networks all obey the universal scaling law

ε ∼ α−1. (1.1)

It is an interesting and important question whether a similar feature of learning holds
as well in more realistic cases where examples are corrupted by noise or the teacher’s rule
is unrealizable. Recently, learning of a simple perceptron from noisy examples was studied
precisely and the following answer was given to this question [2, 3]. When learning is
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disrupted by noise, the learning curve does not obey equation (1.1) and the scaling law
depends on the type of noise. For example, when the teacher is a simple perceptron the
sign of whose output is reverse to the opposite with a fixed probabilityλ, the learning curve
decays as

ε − εmin ∼ α−1 (1.2)

where εmin is the minimum value of generalization error which is attained by a unique
optimal weight. On the other hand, when each input vectorx is disrupted by noise vector
η, the decay of learning curve is rather slow as

ε − εmin ∼ α−2/3 (1.3)

within a logarithmic precision.
When the teacher’s rule is unrealizable by the student, the input–output relation seems

rather noisy to the student. Therefore, it is expected that similar features that are obtained in
learning from noisy examplesare also observed inlearning of unrealizable rules. Learning
of a simple perceptron which learns a multilayer one, such as a committee machine and a
parity machine, is a typical example of learning of unrealizable rules. However, detailed
analysis of such problems is much involved and only a few established conclusions on the
learning curves are obtained so far [4, 5].

In this paper, we study a simple perceptron which learns a perceptron with a non-
monotonic transfer function of reversed-wedge type in order to clarify what type of learning
curve appears when target rule is unrealizable by the student. The input–output relation of
our non-monotonic perceptron is defined as follows. For anN -dimensional input vector
x, this machine returns+1 if u0 ∈ (−a, 0) or u0 ∈ (a,∞) and−1 otherwise, whereu0

is the normalized inner product of its synaptic weightw0 andx. The properties of such
neural networks with non-monotonic transfer function have been studied in the context of
the associative memory [6–9] and the storage capacity [10–12]. The authors of these studies
reported that these non-monotonic neural networks can store more patterns than conventional
monotonic neural networks. This kind of non-monotonic perceptron can be regarded as a
variant of parity machines with three hidden units of which outputs are sign(u−a), sign(u)
and sign(−u − a), respectively. The product of these three outputs is the final output
of this parity machine [11]. This enhanced structure of the non-monotonic networks may
partly explain its greater ability than that of monotonic networks. In addition, the calculation
necessary for analysis is much easier than that for parity machines and committee machines.
For this reason, this type of network has been investigated as a toy model of the multilayer
network [13].

A similar learning model to ours was once investigated by Watkin and Rau [5]. They
studied learning curves of two conventional learning algorithms, ‘high-temperature learning’
and ‘maximum stability algorithm’ by solving the saddle point (SP) equations numerically.
It should be remarked that their investigation was limited to the region in which the number
of examples is relatively small compared with that of the synaptic weights and no analytical
conclusion on the asymptotic property is obtained. In contrast, we will investigate learning
by the ‘minimum error algorithm’, namely ‘zero-temperature Gibbs learning’ with Gardner–
Derrida [14] cost function and give analytical conclusions on its asymptotic behaviour.

The results obtained in this paper are summarized as follows. It is clear that our non-
monotonic perceptron is realizable for the two limiting values ofa, a = 0 and+∞. In these
two special cases, the learning curve obeys the scaling law (1.1). Except for these values
of a, the behaviour of learning is found to be classified into the following four categories
depending ona: for a > ac0 ∼ 1.53, the learning curve smoothly decays to its minimum and
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its asymptote obeys relation (1.2); forac0 > a > ac1 = 1.17, a discontinuous transition from
the poor generalization phase to the good generalization phase takes place at some value of
α = αth ∼ O(1) and the quasistable solution disappears at the spinodal pointα = αsp> αth.
The asymptotic learning curve has the form of equation (1.2); forac1 > a > ac2 = 0.8, the
discontinuous transition from the poor generalization phase to the good generalization phase
also takes place at some value ofα = αth ∼ O(1). However, the spinodal pointαsp becomes
infinity and the quasistable solution persists even in the limitα → ∞. This quasistable
solution exhibits the slow convergence (1.3) in the asymptotic regionα � 1, although the
asymptotic form of the globally stable solution obeys equation (1.2); forac2 > a > 0, the
discontinuous transition disappears and the learning curve decays to its minimum smoothly
exhibiting the slow convergence (1.3) in the asymptotic region. These results suggest that
the scaling relations obtained in the problems of learning from noisy examples generally
appear in the problem of learning unrealizable rules as well. We should also address that
the globally stable solution obtained by the minimum error algorithm realizes the optimal
generalization error in the limitα→∞ for an arbitrarya.

The above results are obtained by using the replica method under the replica-symmetric
(RS) ansatz. Unfortunately, it is known that the RS solution of zero-temperature learning
with the Gardner–Derrida cost function becomes thermodynamically unstable when the
teacher’s rule is unrealizable [15, 5, 16]. Furthermore, it is conjectured that any finite step
of replica symmetry breaking (RSB) is not sufficient to obtain a thermodynamically stable
solution [17]. Nevertheless, we have a conjecture that our results offer a good approximation
at least qualitatively because the same exponents of asymptotic learning curves, 1 and2

3,
are also obtainable without using the replica method in a low-dimensional version of our
learning model.

This paper is organized as follows. In section 2, the problem is formulated and the
general properties of the generalization error are investigated. In section 3, the learning
curves are calculated in the framework of statistical mechanics. In particular, the asymptotic
behaviours of the solutions are investigated analytically. In section 4, we discuss the validity
of our RS solution. Section 5 is devoted to a summary.

2. Model

Hereafter, we assume that an arbitraryN -dimensional vectora is normalized as|a| = √N .
We consider a teacher perceptron with synaptic weightw0 which has a non-monotonic
transfer function of reversed-wedge type parametrized by a non-negative numbera

Ta(x) = sign(−x − a) sign(x) sign(x − a) (2.1)

where sign(x) is the function that returns the sign of argumentx. For anN -dimensional
input vectorx, this machine returns the outputy as

y = Ta(u0) (2.2)

whereu0 ≡ w0 · x/
√
N .

On the other hand, the student in this problem is a simple perceptron with synaptic
weightw. Following to a given set of examplesξP ≡ {(x1, y1), (x2, y2), . . . , (xP , yP )}
which are independently and uniformly drawn from theN -dimensional sphereSN centred
at the origin, this student adjustsw in order to acquire the generalization ability. This
ability is measured by the generalization errorε(w) which is the probability of making a
false prediction on a future example. Due to the assumption that the distribution of inputs
is uniform onSN , ε(w) becomes a function of overlap between the two weightsw0 and
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w, R = w0 · w/N . Note that in the limitN�1, u0 = w0 · x/
√
N andu = w · x/√N

obeys a joint Gaussian distribution

PR(u0, u) = 1

2π
√

1− R2
exp

[
−u

2
0− 2Ru0u+ u2

1− R2

]
(2.3)

whenx is uniformly drawn fromSN . This enables us to calculate the generalization error
as

ε(w) ≡ ε(R) = 〈2(−Ta(u0) sign(u))〉x
=
∫ +∞
−∞

du0

∫ +∞
−∞

duPR(u0, u)[2(Ta(u0))2(−u)+2(−Ta(u0))2(u)]

= 2
∫ 0

−∞
Dt �(R; t) (2.4)

where 〈· · ·〉x represents the average over input vectorx, 2(x) is the Heaviside’s step
function which returns+1 for x > 0 and 0 otherwise, Dt is the Gaussian measure
exp[−t2/2]/

√
2π , and�(R; t) is a function defined as

�(R : t) ≡
∫ +∞
−∞

Dz
[
2
(
−
√

1− R2z − Rt − a
)
+2

(√
1− R2z + Rt

)
− 2

(√
1− R2z + Rt − a

)]
. (2.5)

In figure 1, we plotε(R) for several values of parametera. This figure shows that
for a = ∞, ε(R) goes to zero whenR approaches 1. In contrast, fora = 0, ε(R) goes
to zero whenR approaches−1. This is easily understood because the teacher’s input–
output relation ofa = 0 is completely opposite to that ofa = ∞. Between these two
limiting values a = 0 and a = ∞, ε(R) exhibits a highly non-trivial behaviour. For

Figure 1. Generalization error as a function of overlapR, ε(R), for several values ofa.
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a > ac1 =
√

2 log 2= 1.17, ε(R) is a monotonically decreasing function ofR which takes
the non-zero minimum value atR = +1. However, fora < ac1, ε is locally minimized at

R−(a) ≡ −
√

2 log 2− a2

2 log 2
(2.6)

and locally maximized at

R+(a) ≡ +
√

2 log 2− a2

2 log 2
= −R−(a). (2.7)

Further, for 0< a < ac2 = 0.8, ε(R−(a)) < ε(+1). Namely,ε(R) is globally minimized
at R = R−(a). In figures 2(a) and (b), we plot the global minimum value ofε(R) and the
value ofR which gives the global minimum as functions ofa, respectively. From these
figures, we find that fora > ac2, it is desirable for the student to find the teacher’s weight
w0. In contrast, for 0< a < ac2, it is more desirable for the student to find a weight
w∗ which satisfies the conditionw∗ ·w0/N = R−(a). This is a very interesting situation
because most of the previous works have mainly focused on the problem of how fast the
student finds auniqueoptimal weight.

3. Statistical mechanics

For the purpose of acquiring a good generalization ability, it is a natural learning strategy
to minimize the number of false predictions on the given set of examplesξP

E(w|ξP ) =
P∑
µ=1

2(−yµ · uµ) (3.1)

where uµ ≡ w · xµ/
√
N . We call the learning algorithm following this strategy the

‘minimum error algorithm’. The cost function (3.1) is identical to that of Gardner and
Derrida [14] and the learning process of the minimum error algorithm is investigated through
their analytical method as follows.

From the ‘energy’ defined by equation (3.1), the ‘partition function’ with the inverse
temperatureβ is given by

Z(β) =
∫

dw δ(|w|2−N) exp[−βE(w|ξP )]

=
∫

dw δ(|w|2−N)
P∏
µ=1

[e−β + (1− e−β)2(yµ · uµ)]. (3.2)

Minimization ofE(w|ξP ) corresponds to the limitβ →∞ in Gibbs–Boltzmann distribution
and we focus on this limit hereafter.

3.1. Belowαc

Due to the storage ability of perceptrons, there remain some weights which completely
reproduce the input–output relations amongξP until the ratioα = P/N increases up to
some critical capacityαc even if the teacher’s relation is unrealizable. This enables us
to calculate the learning curve belowαc by evaluating the logarithm of ‘Gardner–Derrida
volume’ VGD = Z(∞) through the formula

lnVGD

N
= 〈〈lnZ(∞)〉〉ξP

N
= 1

N
lim
n→0

〈〈Zn(∞)〉〉ξP − 1

n
(3.3)
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Figure 2. (a) The global minimum value ofε(R) as a function ofa. (b) R which globally
minimize ε(R) as a function ofa.

where〈〈· · ·〉〉ξP represents the average over the example setξP . Zn(∞) is the simultaneous
partition function ofn-replicated systems sharing the same random variablesξP and becomes
a function of order parameters

Ra = w0 ·wa

N
(3.4)

qab = wa ·wb

N
(3.5)

wherea = 1, . . . , n andb = 1, . . . , n are the indices which represent replicated systems.
Under the RS ansatz

Ra = R (3.6)

qab = q (3.7)

we can show (see appendix A) that the equation (3.3) is evaluated as

ext{R,q}

{
2α
∫ +∞
−∞

Dt �

(
R√
q

: t

)
ln4(q : t)+ 1

2
ln(1− q)+ q − R2

2(1− q)
}

(3.8)
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where�(R : t) is defined as equation (2.5) and

4(q : t) ≡
∫ +∞
−∞

Dz 2(
√

1− qz +√qt). (3.9)

From the identities

∂

∂R

∫ +∞
−∞

Dt �

(
R√
q

: t

)
F(t) = 1

R

∫ +∞
−∞

Dt
∂�

∂t

(
R√
q

: t

)
∂F (t)

∂t
(3.10)

∂

∂q

∫ +∞
−∞

Dt 4(q : t)F (t) = 1

2q

∫ +∞
−∞

Dt
∂4

∂t
(q : t)

∂F (t)

∂t
(3.11)

we find that equation (3.8) yields the following set of SP equations

2α
∫ +∞
−∞

Dt �×
(
�t

�

)
×
(
4t

4

)
= R2

1− q (3.12)

2α
∫ +∞
−∞

Dt �×
(
4t

4

)2

= q(q − R2)

(1− q)2 (3.13)

whereFt represents the abbreviation of the partial derivative of a functionF with respect
to t . By solving the SP equations (3.12) and (3.13), we can investigate the learning process
belowαc.

The critical capacityαc is defined as a ratioα = P/N at which overlapq becomes
1. Taking the limitq → 1 in the SP equations (3.12) and (3.13), we obtain a couple of
equations which determinesαc as

−2αc

∫ 0

−∞
Dt t�t (Rc : t) = Rc2 (3.14)

2αc

∫ 0

−∞
Dt t2�(Rc : t) = 1− Rc2 (3.15)

whereRc is the value ofR at the critical capacityαc. Here, we have used the relation

4t

4
∼ − q

1− q t2(−t) (3.16)

which is valid in the limitq → 1. αc andRc which are obtained from these equations are
plotted as functions ofa in figures 3(a) and (b).

3.2. Beyondαc

The solution of equations (3.12) and (3.13) disappears forα > αc. This reflects the fact
that beyondαc there is no weight which completely reproduces the input–output relations
amongξP . This makes the Gardner–Derrida volumeVGD shrink to zero. Therefore, we can
not investigate the learning process by evaluating equation (3.3). Instead, the ‘free energy’

−f = lim
β→∞

〈〈lnZ(β)〉〉ξP
Nβ

= lim
β→∞

lim
n→0

〈〈Zn(β)〉〉ξP − 1

nNβ
(3.17)

gives us a solution forα > αc.
〈〈Zn(β)〉〉ξP also becomes a function of order parametersRa and qab. Under the RS

ansatz equations (3.6) and (3.7), it can be shown (see appendix A) that equation (3.17) with
finite β is evaluated as

ext{R,q}

{
2α

β

∫ +∞
−∞

Dt �

(
R√
q

: t

)
ln4β(q : t)+ 1

2β
ln(1− q)+ q − R2

2β(1− q)
}

(3.18)
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Figure 3. (a) αc versusa. (b) Rc versusa.

where

4β(q : t) ≡ e−β + (1− e−β)4(q : t). (3.19)

In the limit β →∞, a non-trivial result is obtained only whenq → 1 keepingx ≡ β(1−q)
finite. Then, equation (3.18) becomes

ext{R,x}

{
− 2α

[ ∫ 0

−∞
Dt �(R : t)

{
2(−t −

√
2x)+ t2

2x
2(t +

√
2x)

}]
+ 1− R2

2x

}
(3.20)

which yields the following SP equations

−2α
∫ 0

−√2x
Dt t�t (R : t) = R2 (3.21)

2α
∫ 0

−√2x
Dt t2�(R : t) = 1− R2. (3.22)

In the derivation of equation (3.20), we have used the relation

4β(q : t) ∼



e−β for t < −
√

2β(1− q)
q

−
√

1− q√
2πqt

e−
q

2(1−q) t
2

for −
√

2β(1− q)
q

< t < 0

1 for 0< t

(3.23)

which is valid in the limitsβ →∞ andq → 1.
Before proceeding further, we mention the stability of the RS solution obtained from the

SP equations (3.21) and (3.22). Unfortunately, our RS solution becomes thermodynamically
unstable forα > αc (see appendix B). This results from a similar reason to that which Bouten
(1994) pointed out for a problem of storing random patterns in a perceptron [16]. Therefore,
we have to take the RSB into account in order to obtain a stable solution. However, it is
much involved to compute RSB solutions and such computation is beyond the purpose of
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this paper. Hence, here we only present unstable RS solutions hoping that they are still good
approximations and discuss their validity by comparing them with the results obtainable in
a low-dimensional version of the present problem in the next section.

By solving the SP equations (3.21) and (3.22), we found that the feature of the learning
is classified into the following five types depending ona.

3.2.1. a = ∞, 0 (realizable cases). The teacher becomes realizable fora = ∞ because
the teacher is identical to the student withR = 1 (w = w0). In addition, the teacher is
also realizable fora = 0. This is because fora = 0 its input–output relation is completely
opposite to that ofa = ∞, which means the student withR = −1 (w = −w0) exactly
mimics the teacher. For these special values ofa, αc becomes infinity and the learning is
described by equations (3.12) and (3.13) even in the limitα → ∞. The solution of these
equations is thermodynamically stable and the learning curve is identical to that obtained
in a realizable problem [15, 18] which has the asymptote

ε ∼ 0.624α−1. (3.24)

This is consistent with the universal scaling (1.1) observed in general realizable problems.

3.2.2. a > ac0 ∼ 1.53. In this parameter region, we found that the order parameterR

monotonically increases to+1 asα→∞ (figure 4(a)). On the other hand,x decreases from
+∞ to some value, and after that, approaches up toa2/2 in the limit α→∞ (figure 4(b)).

In order to investigate how fastR andx converge to these limiting values, we expand
equations (3.21) and (3.22) with small parameters1R = 1− R and1x = a2/2− x. This
yields the following equations

α

[
ae−a

2/2

√
2π

H

(
1x

a
√

21R

)
+ (1− e−a

2/2)

2π

√
21R

]
∼ 1 (3.25)

α

[
1R3/2

√
2π
+ a

2e−a
2/2

√
2π

H

(
1x

a
√

21R

)]
∼ 21R (3.26)

whereH(x) ≡ ∫ +∞
x

dt exp[−t2/2]/
√

2π and these imply the following scalings

1R ∼ α−2 (3.27)

1x ∼ (lnα)1/2α−1. (3.28)

From equations (2.4) and (2.5), we found the relation

ε(1−1R)− ε(+1) ∼ O(1R1/2). (3.29)

Note thatε(+1) is the minimum value ofε(R) for this parameter region. Substituting
equation (3.27) into equation (3.29), we obtain the learning curve

ε − εmin ∼ α−1 (3.30)

which is identical to equation (1.2) discovered in the problem of learning disrupted by
output noise (figure 4(c)).
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Figure 4. Solution for a = 2.0. R, x, ε and f are plotted as functions ofa in (a), (b), (c)
and (d), respectively. The inner graph of (c) is consistent with the analytically obtained scaling
ε − εmin ∼ α−1.

3.2.3.ac0 > a > ac1. A discontinuous transition from the poor generalization phase to the
good generalization phase is observed atα ∼ O(1) in this parameter region. In figures 5(a)–
(d), we plotR, x, f and ε for a = 1.3 as functions ofα, respectively. We can observe
that there are three solutions for 12.5 < α < αsp∼ 24.2. Forα < αth ∼ 14.7, the solution
which has the smallestR among the three has the lowest free energy and therefore is the
globally stable solution. Asα is increased beyondαth, the solution which has the largest
R becomes the global minimum of free energy. Namely, a thermodynamic phase transition
takes place atα = αth. Nevertheless, the solution with the smallestR persists until the
spinodal pointαsp is reached. The solution with the middleR is the local maximum of free
energy and represents a unstable solution. A similar transition was also reported by Engel
and Reimer [13] in a problem where a non-monotonic perceptron learns the same type of
non-monotonic perceptron, although teacher’s rule is realizable in their problem.

In the limit α → ∞, R approaches+1 which achieves the global minimum of the
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Figure 5. Solution fora = 1.3. R, x, ε andf are plotted as functions ofa in (a), (b), (c) and
(d), respectively. The globally stable solution is plotted by heavy curves.

generalization error in this parameter region. The asymptotic behaviour of the learning
curve is identical to equation (3.30).

3.2.4. ac1 > a > ac2. The discontinuous transition from the poor generalization phase to
the good generalization phase is observed as well as in the previous subsection. However,
the spinodal pointαsp becomes infinitya < ac1, which means that the quasistable solution
beyondαth persists even in the limitα→∞.

This is easily understood by the following consideration. In thermodynamical systems,
physical quantities correspond to the minimum point of free energy which consists of
‘energy’ and ‘entropy’. In our system, the energy (3.1) increases withα, although the
effect of entropy in free energy is not proportional toα. Therefore, in the limitα → ∞,
it is expected that properties of the system are determined almost only by energy. As a
result of the central limit theorem, energy is nearly proportional to the generalization error
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ε(R) for α � 1. This implies thatR obtained from the SP equations (3.21) and (3.22)
in the limit α → ∞ are identical to the extreme points ofε(R). For a > ac1, R = 1
is the unique minimum point ofε(R). Hence, other solutions of the SP equations should
disappear asα → ∞ even if they exist forα ∼ O(1), which explains whyαsp is finite
for ac1 < a < ac0. On the other hand, forac2 < a < ac1, ε(R) has two extreme points
R = R−(a) andR = R+(a) besidesR = 1 which remains the global minimum ofε(R).
This suggests that the SP equations have three solutions in the limitα→∞ corresponding
to the three extreme points ofε(R), i.e.R = 1, R−(a) andR+(a), which means thatαsp is
infinity.

The solutions fora = 1.0 are plotted in figures 6(a)–(d). In these figures, we find
three solutions which all persist in the limitα→∞. One solution (solution (I)) starts from

Figure 6. Solution fora = 1.0. R, x, ε andf are plotted as functions ofa in (a), (b), (c) and
(d), respectively. Globally stable solution is plotted by heavy curves.
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αc = 2.05 and reaches the local minimum ofε(R) as

solution (I)

{
R→ R−(a)
x → 0

(3.31)

in the limit α→∞.
On the other hand, two other solutions emerge atα ∼ 16. One of them (solution (II))

approaches to the local maximum ofε(R) as

solution (II)

{
R→ R+(a)
x → 0

(3.32)

in the limit α → ∞. This solution corresponds to the local maximum of free energy and
therefore unstable. The last one (solution (III)) is another (local) minimum of free energy
approaching to the global minimum ofε(R), R = 1 as

solution (III)

{
R→ 1

x → a2/2
(3.33)

in the limit α→∞.
For α < αth ∼ 47, solution (I) is the global minimum of free energy. Asα increases

beyondαc, solution (III) becomes the global minimum of free energy, which means that a
thermodynamical transition from solution (I) to solution (III) takes place atαth. Hence, we
obtainR → 1 asα →∞, which achieves the global minimum ofε(R) for this parameter
region ofa. The asymptotic learning curve of this solution obeys the same power law as
equation (3.30).

In addition to the globally stable solution (III), we now have a locally stable solution (I)
in the limit α → ∞. R of this solution approachesR−(a) which locally minimizes
ε(R). In order to investigate how fastR and x converge as equation (3.31), we expand
equations (3.21) and (3.22) with small parameters1R = R − R−(a) and x. After some
algebra, we obtain the following equations

2α
�ttt (R−(a) : 0)√

2πR−(a)2
1Rx ∼ R−(a)2 (3.34)

2α
x3/2

3
√
π
∼ 1− R−(a)2 (3.35)

which suggest the scalings

1R ∼ α−1/3 (3.36)

x ∼ α−2/3. (3.37)

In figures 7(a) and (b), we plot asymptotic behaviours of1R and x as functions ofα,
respectively, which are consistent with the scalings of equations (3.36) and (3.37).

From equations (2.4) and (2.5), it is found that the relation

ε(R−(a)+1R)− ε(R−(a)) ∼ O(1R2) (3.38)

holds for small1R. Substituting equation (3.36) into equation (3.38), we obtain the scaling

ε − εl.min ∼ α−2/3 (3.39)

where εl.min = ε(R−(a)). It should be remarked that this scaling form is identical to
equation (1.3) discovered in the problem of learning disrupted by input noise, although
εl.min is not the global but the local minimum of generalization error (figure 6(c)).
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Figure 7. Asymptotic behaviour of the quasistable solution fora = 1. 1R = R−R−(a) andx
are plotted as functions ofα in (a) and (b), respectively. These graphs are consistent with the
analytically derived scalings1R ∼ α−1/3 andx ∼ α−2/3.

3.2.5. ac2 > a > 0. In this parameter region,ε(R) is minimized not atR = 1 but at
R = R−(a). As a result, solution (I) obtained in section 3.2.4 remains the global minimum
of free energy untilα → ∞. Namely, the thermodynamic transition from solution (I) to
solution (III) disappears and the learning curve decays smoothly to its minimum as

ε − εmin ∼ α−2/3 (3.40)

whereεmin = ε(R−(a)) is the minimum value ofε(R) in this parameter region (figures 8(a)–
(d)).

Remark that equation (3.40) suggests that the exponent of learning curve in the limit
a→ 0 is different from that ofa = 0 (realizable case) in equation (1.1). In contrast, as for
the other realizable casea = ∞, the exponents of learning curves fora→∞ are the same
as that ofa = ∞. This implies that non-monotonic teacher with smalla is more difficult
for a simple perceptron to learn than that with largea.

4. Discussion

In this section, we discuss the validity of the results obtained under the RS ansatz in the
previous section. First, we comment about the critical values ofa, i.e. ac0, ac1 and ac2.
ac0 ∼ 1.53 is the point below which a discontinuous transition appears in the learning
curve. This value is intrinsic of the RS ansatz and therefore will be changed if we proceed
to RSB calculations. However, we conjecture thatac1, which is defined as the point below
whichαsp becomes infinity, andac2, which is defined as the point below whichαth becomes
infinity, will be unchanged by RSB calculations because they result from changes in the
shape ofε(R) which is independent of the ansatz on the replica calculations.

Secondly, we mention the critical values ofα, i.e. αc, αth andαsp. αc is the point at
which q → 1. In our case, this value is identical toαAT beyond which the RS solution
becomes unstable (see appendix B). Therefore, this is invariant if we take the RSB into
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Figure 8. Solution fora = 0.5. R, x, ε andf are plotted as functions ofa in (a), (b), (c) and
(d), respectively. Globally stable solution is plotted by heavy curves.

account. However,αth and αsp will be changed by RSB calculations because they are
intrinsic of the RS solution.

Finally, we discuss the asymptotic behaviours of learning curves. In the previous section,
we found two types of asymptotic learning curves with exponents 1 and2

3 for unrealizable
cases. Although they are unstable RS solutions, the two exponents 1 and2

3 are consistent
with those obtainable without using the replica method in a two-dimensional version of the
present problem as follows. This suggests that our results are good approximations even if
they are not exact.

Let us consider the following two-dimensional learning problem. In this problem, the
teacher is a two-dimensional non-monotonic perceptrons with the weightw0 = (w0

1, w
0

2)

which returns output

y = Ta(w0 · x) (4.1)
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Figure 9. The two-dimensional learning problem. From the two-dimensional nature of the
problem, the system is specified by a single parameterφ.

for two-dimensional inputx. Here,Ta(x) is defined as equation (2.2) and it is assumed
that |w0| = 1. On the other hand, the student is a two-dimensional simple perceptron with
weightw = (w1, w2). In order to acquire a good generalization ability, this student learns
from a given set of examplesξP = {(x1, y1), (x2, y2), . . . (xP , yP )} which are assumed
to be independently and identically drawn from the two-dimensional Gaussian distribution
exp[−(x1

2+ x2
2)/2]/(2π), following the error minimum algorithm (figure 9).

From the two-dimensional nature of the problem, the system can be specified by a
single parameterφ which is the angle betweenw0 andw. In figure 10, we plot the number
of false predictions on a realization ofξP , EP , versusφ together with its expectation
〈EP (φ)〉 = P × ε(φ) for a = 0.5. Here,ε(φ) is the generalization error as a function ofφ.
In the figure, we only plot the graphs for positiveφ because these graphs are statistically
symmetric under the reverse operationφ ↔ −φ.

From this figure, it is found thatEP (φ) is minimized aroundφ = 0, which globally
minimizesε(φ). At the same time,EP (φ) is locally minimized aroundφ = φ∗ ∼ 2.3[rad],
which is the local minimum point ofε(φ). Let us estimate how these (local) minimum
points fluctuate aroundφ = 0 or φ = φ∗ by the following consideration. A similar method
was once applied to explain the asymptotic learning curve of a stochastic learning problem
[19].

EP (φ) is the number of examples which satisfy the condition thatyµ = 1 and
w0 · xµ < 0 or yµ = −1 andw0 · xµ > 0 (µ = 1, 2, . . . , P ). First, we evaluate how the
expectation ofEP (φ) increases aroundφ = 0, andφ = φ∗. From figure 10, we find that
this increases as

〈EP (φ)− EP (0)〉 ∼ P × |φ| (4.2)

aroundφ = 0. On the other hand,〈EP (φ)〉 quadratically increases around the local minimum
φ = φ∗, as

〈EP (φ)− EP (φ∗)〉 ∼ P × (φ − φ∗)2. (4.3)
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Figure 10. EP (φ) for a realization of an example setξP = {(x1, y1), (x2, y2), . . . , (xP , yP )}.
This graph is fora = 0.5 and P = 100. The broken curve represents the expectation
〈EP (φ)〉 = P × ε(φ), whereε(φ) is the generalization error forφ.

Next, we estimate the fluctuation of equations (4.2) and (4.3). Supposeφ moves from
φ = 0 to φ = π [rad]. Every time the decision boundary ofw comes across an inputxµ
(1 < µ < P ), EP (φ) increases or decreases discontinuously by 1. Aroundφ = 0, EP (φ)
almost always increases because positive and negative examples are clearly separated around
the boundaryw0 ·x = 0. This means that the fluctuation of equation (4.2) is very small and
the minimum point fluctuates of the order ofP−1 which is a rough estimate of the width
between two neighbouring examples. Therefore, we obtain

ε − εmin ∼ ε(φ)− ε(0) ∼ |φ| ∼ P−1 (4.4)

which has the same exponent 1 as that of equation (3.30).
In contrast,EP (φ) increases or decreases almost randomly aroundφ = φ∗. This motion

of EP (φ) is analogous to that of a ‘random walk’ if we regardφ as ‘time’. From this
analogy, we obtain the following relation with respect to the fluctuation of equation (4.3)

1(EP (φ)− EP (φ∗)) ∼
√
P × |φ − φ∗|. (4.5)

The balance between equations (4.3) and (4.5) determines the fluctuation of the (local)
minimum point ofEP (φ) aroundφ = φ∗. This gives the scaling|φ − φ∗| ∼ P−1/3, which
yields the learning curve

ε − εl.min ∼ ε(φ)− ε(φ∗) ∼ (φ − φ∗)2 ∼ P−2/3 (4.6)

which shares the same exponent2
3 with equations (3.39) and (3.40).

In order to confirm the above discussion, we performed numerical experiments for
a = 1.0 (largea) whereφ = 0 is the global minimum ofε(φ), and fora = 0.1 (smalla)
whereφ = φ∗ = 2.99[rad] globally minimizesε(φ). The numerically obtained data exhibits
the following behaviours. As the number of examplesP increases, the parameter obtained
by learning converges to the global minimum ofε(φ), namely, to 0 fora = 1.0 and toφ∗
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Figure 11. Average ofε − εmin versus the number of examplesP for a = 1.0 and 0.1. The
lines were drawn by the least-square fit under the assumptionε − εmin ∼ P−γ . The obtained
exponents areγ = 1.01±0.01 for a = 1.0 andγ = 0.68±0.02 for a = 0.1, which are in good
agreement with our theoretical predictionsγ = 1 and 2

3.

for a = 0.1. The average generalization errorε taken over 1000 sets of examples is plotted
in figure 11. This figure indicates scaling relationsε − εmin ∼ O(P−γ ) for both cases. The
exponents obtained from the least-square method areγ = 1.01± 0.01 for a = 1.0 and
γ = 0.68± 0.02 for a = 0.1, which are highly consistent with our theoretical predictions
γ = 1 for largea and 2

3 for small a.

5. Summary

In this paper, we have studied the learning process of a simple perceptron which learns
an unrealizable Boolean rule represented by a perceptron with a non-monotonic transfer
function of reversed-wedge type. This type of non-monotonic perceptron is considered as a
variant of multilayer perceptron and is parametrized by a single parametera. Reflecting the
non-monotonic nature of the target rule, it was found that a discontinuous transition from
the poor generalization phase to the good generalization phase takes place when the number
of examplesP is relatively small compared with that of synaptic weightN for intermediate
values ofa. We also found that asymptotic learning curves are classified into the following
two categories depending ona. For largea, the learning curve obeys the scaling relation
with exponent 1. On the other hand, the learning curve with exponent2

3 is obtained for
small a. These exponents are the same as those found in learning from noisy examples
[2, 3]. Therefore, we conjecture that these types of learning curves generally appear in
learning of unrealizable Boolean functions independent of the cause of unrealizability.
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Appendix A. Calculation of 〈〈lnZ(β)〉〉ξP

In this appendix, we derive equations (3.3) and (3.18) by the replica method. Under the RS
ansatz (3.6) and (3.7),〈〈Zn(β)〉〉ξP is evaluated by the SP method with regard toR andq as

〈〈Zn(β)〉〉ξP = ext{R,q}

{∫ n∏
a=0

dwa

n∏
a=1

δ(wa ·wa −N)
n∏
a=1

δ(w0 ·wa −NR)

×
∏
a>b

δ(wa ·wb −Nq)
〈〈 n∏
a=1

P∏
µ=1

[e−β + (1− e−β)2(yµ · uaµ)]
〉〉
ξP

}
= ext{R,q}{A0(R, q : n)× A1(R, q, β : n)} (A.1)

uaµ ≡ wa · xµ√
N

. (A.2)

In the last line of equation (A.1), we definedA0(R, q : n) andA1(R, q, β : n) as

A0(R, q : n) ≡
∫ n∏

a=0

dwa

n∏
a=1

δ(wa ·wa −N)
n∏
a=1

δ(w0 ·wa −NR)
∏
a>b

δ(wa ·wb −Nq)

(A.3)

and

A1(R, q, β : n) ≡
〈〈 n∏
a=1

P∏
µ=1

[e−β + (1− e−β)2(yµ · uaµ)]
〉〉
ξP

(A.4)

respectively.
By using the usual SP method,A0(R, q : n) is evaluated as

A0(R, q : n) =
[(

1+ nq − R
2

1− q
)
× (1− q)n

]N/2
(A.5)

except for a numerical factor [20]. Next, we evaluateA1(R, q, β : n). Since it is assumed
that eachxµ (µ = 1, 2 . . . P ) is drawn independently and iteratively from an identical
distribution, the average with respect toξP in equation (A.4) is replaced by the product of
the averages 〈〈 n∏

a=1

[e−β + (1− e−β)2(yµ · uaµ)]
〉〉
(xµ,yµ)

(A.6)

whereµ = 1, . . . P . These averages are independent of indexµ and therefore we dropµ
in the evaluation of equation (A.6) hereafter. For an inputx, the ‘probability’ thaty = 1
is returned by the non-monotonic teacher is

P(y = +1|x) = 2
(
−w0 · x√

N
− a

)
+2

(
w0 · x√
N

)
−2

(
w0 · x√
N
− a

)
= 2(−u0− a)+2(u0)−2(u0− a)
= 1− P(y = −1|x) = P(y = −1| − x). (A.7)
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By taking the average with respect toy first in equation (A.6) using equation (A.7) and
taking the symmetry betweenx and−x into account, we obtain〈〈

2[2(−u0− a)+2(u0)−2(u0− a)]
n∏
a=1

[e−β + (1− e−β)2(ua)]
〉〉
x
. (A.8)

It should be remarked that under the RS ansatz (3.6) and (3.7),u0, u1, . . . un become a
set of joint Gaussian random variables which satisfy the condition

〈ua · ub〉 = (1− q)δab + q for a, b = 1, . . . , n (A.9)

〈u0 · ua〉 = R for a = 1, . . . , n (A.10)

〈u0
2〉 = 1 (A.11)

whenx is uniformly drawn fromSN . Here,〈· · ·〉 stands for the statistical average of· · ·.
These joint Gaussian random variables are represented explicitly byn + 2 independent
Gaussian random variablesza (a = 0, 1, . . . , n) and t which satisfy the condition

〈za · zb〉 = δab for a, b = 0, 1, . . . , n (A.12)

〈t · za〉 = 0 for a = 0, 1, . . . , n (A.13)

〈t2〉 = 1 (A.14)

as

ua =
√

1− qza +√qt for a = 1, . . . , n (A.15)

u0 =
√

1− R
2

q
z0+ R√

q
t. (A.16)

Substituting equations (A.15) and (A.16) into equation (A.8) and taking the average
with respect toza (a = 0, 1, . . . , n) and t instead ofx, we obtain〈〈 n∏
a=1

[e−β + (1− e−β)2(y · ua)]
〉〉
(x,y)

= 2
∫

Dt

[ ∫
Dz0

[
2

(
−
√

1− R
2

q
z0− R√

q
t − a

)

+2
(√

1− R
2

q
z0+ R√

q
t

)
−2

(√
1− R

2

q
z0+ R√

q
t − a

)]]
×

n∏
a=1

∫
Dza

[
e−β + (1− e−β)2

(√
1− qza +√qt

)]
= 2

∫
Dt �

(
R√
q

: t

)
{4β(q : t)}n (A.17)

which means

A1(R, q, β : n) =
[

2
∫

Dt �

(
R√
q

: t

)
{4β(q : t)}n

]P
. (A.18)

For smalln, equations (A.5) and (A.18) are expanded with respect ton as

A0(q, R : n) ∼ 1+ n×N ×
[

1

2
ln(1− q)+ q − R2

2(1− q)
]
+O(n2) (A.19)
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and

A1(q, R, β : n) ∼ 1+ n× 2P ×
[ ∫

Dt �

(
R√
q

: t

)
ln4β(q : t)}

]
+O(n2) (A.20)

respectively. From these, we obtain

〈〈lnZ(β)〉〉ξP
N

= ext{R,q}

{
2α
∫

Dt �

(
R√
q

: t

)
ln4β(q : t)+ 1

2
ln(1− q)+ q − R2

2(1− q)
}

(A.21)

which yields equations (3.3) and (3.18).

Appendix B. Stability of the RS solution

Here, we show that our RS solution is unstable forα > αc. The Almeida–Thouless (AT)
stability for the RS solution is judged by the following quantity for any temperature [21, 16],

33 = αλ3λ̃3− 1 (B.1)

where

λ3 ≡ 2

q2

∫
Dt �

(
R√
q

: t

) [
∂2

∂t2
ln4β(q : t)

]2

(B.2)

λ̃3 ≡ (1− q)2. (B.3)

From equation (3.23), we obtain the following relation for the RS solution

ln4β(q : t) ∼


−β for t < −√2x

− β
2x
t2 for −√2x < t < 0

0 for 0< t

(B.4)

wherex = β(1− q), whenβ is large and 1− q is small. This yields the relation

∂2

∂t2
ln4β(q : t) ∼ β

[√
2

x
δ(t +

√
2x)− 1

x

(
2
(
t +
√

2x
)
−2(t)

)]
(B.5)

which means that33 is calculated as

33 = 2αx2
∫
�(R : t)

[√
2

x
δ
(
t +
√

2x
)
− 1

x

(
2
(
t +
√

2x
)
−2(t)

)]2

− 1 (B.6)

in the limit β → ∞. This diverges to infinity unlessx is infinite because the right-hand
side of equation (B.6) includes a term such asδ2(t +√2x) in the integral. Forα > αc, x
of our RS solution is finite, which means that this solution is thermodynamically unstable.

We should mention that33 becomes 0 atα = αc. Namely, the RS solution loses the
AT stability just at αc. This is explained as follows. By partially integrating the left-hand
side of equation (3.15), we obtain

2αc

∫ 0

−∞
Dt [�(Rc : t)+ t�t (Rc : t)] = 1− Rc2. (B.7)

Adding equation (3.14) to this equation, we obtain the following relation atα = αc

2αc

∫ 0

−∞
Dt �(Rc : t) = 1. (B.8)
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Note thatx = ∞ at α = αc. Then, the right-hand side of equation (B.6) becomes

2αc

∫ 0

−∞
Dt �(Rc : t)− 1. (B.9)

From equation (B.8), this means that33 = 0 atα = αc.
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