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Abstract. In this paper, we study the generalization ability of a simple perceptron which
learns an unrealizable Boolean function represented by a perceptron with a non-monotonic
transfer function of reversed-wedge type. This type of non-monotonic perceptron is considered
as a variant of multilayer perceptron and is parametrized by a single ‘wedge’ paraineter
Reflecting the non-monotonic nature of the target function, a discontinuous transition from the
poor generalization phase to the good generalization phase is observed in the learning curve for
intermediate values ai. We also find that asymptotic learning curves are classified into the
following two categories depending an For largea, the learning curve obeys a power law
with exponent 1. On the other hand, a power law with expor%n’ﬂ obtained for smalk.
Although these two exponents are obtained from unstable replica symmetric solutions by using
the replica method, they are consistent with the results obtainable without using the replica
method in a low-dimensional version of this learning problem. This suggests that our results
are good approximations even if they are not exact.

1. Introduction

Recently, the problem of learning from examples has been an attractive topic in statistical
mechanics [1]. In order to investigate how well a generalization ability can be acquired
by learning, learning curves of generalization ergpmwhich is a probability of making a

false prediction for a novel example, were calculated for various types of networks by using
the replica method. These studies revealed the following feature of learning. When the
number of examples is small relative to that of weight paramete¥s learning curves
exhibit rich behaviours depending on the architectures of networks. In contrast, there are
some universal properties in the asymptotic region whete P/N is large. For example,

in the case where a teacher’s relation is realizable and there is no noise, learning curves of
Boolean networks all obey the universal scaling law

e~a Ll (1.1)

It is an interesting and important question whether a similar feature of learning holds
as well in more realistic cases where examples are corrupted by noise or the teacher’s rule
is unrealizable. Recently, learning of a simple perceptron from noisy examples was studied
precisely and the following answer was given to this question [2, 3]. When learning is
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disrupted by noise, the learning curve does not obey equation (1.1) and the scaling law
depends on the type of noise. For example, when the teacher is a simple perceptron the
sign of whose output is reverse to the opposite with a fixed probahilithe learning curve
decays as

€ — Emin ™ 0!71 (12)

where emin is the minimum value of generalization error which is attained by a unique
optimal weight. On the other hand, when each input vegtds disrupted by noise vector
7, the decay of learning curve is rather slow as

& — emin ~ a3 (1.3)

within a logarithmic precision.

When the teacher’s rule is unrealizable by the student, the input—output relation seems
rather noisy to the student. Therefore, it is expected that similar features that are obtained in
learning from noisy exampleare also observed ilearning of unrealizable rulesLearning
of a simple perceptron which learns a multilayer one, such as a committee machine and a
parity machine, is a typical example of learning of unrealizable rules. However, detailed
analysis of such problems is much involved and only a few established conclusions on the
learning curves are obtained so far [4, 5].

In this paper, we study a simple perceptron which learns a perceptron with a non-
monotonic transfer function of reversed-wedge type in order to clarify what type of learning
curve appears when target rule is unrealizable by the student. The input—output relation of
our non-monotonic perceptron is defined as follows. ForMNadimensional input vector
x, this machine returng-1 if ug € (—a, 0) or ug € (a, o0) and —1 otherwise, whereig
is the normalized inner product of its synaptic weigh§ and x. The properties of such
neural networks with non-monotonic transfer function have been studied in the context of
the associative memory [6—-9] and the storage capacity [10—12]. The authors of these studies
reported that these non-monotonic neural networks can store more patterns than conventional
monotonic neural networks. This kind of non-monotonic perceptron can be regarded as a
variant of parity machines with three hidden units of which outputs argsiga), sign(u)
and sigri—u — a), respectively. The product of these three outputs is the final output
of this parity machine [11]. This enhanced structure of the non-monotonic networks may
partly explain its greater ability than that of monotonic networks. In addition, the calculation
necessary for analysis is much easier than that for parity machines and committee machines.
For this reason, this type of network has been investigated as a toy model of the multilayer
network [13].

A similar learning model to ours was once investigated by Watkin and Rau [5]. They
studied learning curves of two conventional learning algorithms, ‘high-temperature learning’
and ‘maximum stability algorithm’ by solving the saddle point (SP) equations numerically.

It should be remarked that their investigation was limited to the region in which the number
of examples is relatively small compared with that of the synaptic weights and no analytical
conclusion on the asymptotic property is obtained. In contrast, we will investigate learning
by the ‘minimum error algorithm’, namely ‘zero-temperature Gibbs learning’ with Gardner—
Derrida [14] cost function and give analytical conclusions on its asymptotic behaviour.

The results obtained in this paper are summarized as follows. It is clear that our non-
monotonic perceptron is realizable for the two limiting valueaaf = 0 and+oc. In these
two special cases, the learning curve obeys the scaling law (1.1). Except for these values
of a, the behaviour of learning is found to be classified into the following four categories
depending om: for a > a.o ~ 1.53, the learning curve smoothly decays to its minimum and



Learning curves of unrealizable Boolean rules 125

its asymptote obeys relation (1.2); fap > a > a.1 = 1.17, a discontinuous transition from

the poor generalization phase to the good generalization phase takes place at some value of
a = an ~ O(1) and the quasistable solution disappears at the spinodal @eints, > a.

The asymptotic learning curve has the form of equation (1.2)afpt> a > a., = 0.8, the
discontinuous transition from the poor generalization phase to the good generalization phase
also takes place at some valueof= o ~ O(1). However, the spinodal poilis, becomes

infinity and the quasistable solution persists even in the limit> co. This quasistable
solution exhibits the slow convergence (1.3) in the asymptotic regips 1, although the
asymptotic form of the globally stable solution obeys equation (1.2)afor- a > 0, the
discontinuous transition disappears and the learning curve decays to its minimum smoothly
exhibiting the slow convergence (1.3) in the asymptotic region. These results suggest that
the scaling relations obtained in the problems of learning from noisy examples generally
appear in the problem of learning unrealizable rules as well. We should also address that
the globally stable solution obtained by the minimum error algorithm realizes the optimal
generalization error in the limi# — oo for an arbitrarya.

The above results are obtained by using the replica method under the replica-symmetric
(RS) ansatz. Unfortunately, it is known that the RS solution of zero-temperature learning
with the Gardner—Derrida cost function becomes thermodynamically unstable when the
teacher’s rule is unrealizable [15, 5, 16]. Furthermore, it is conjectured that any finite step
of replica symmetry breaking (RSB) is not sufficient to obtain a thermodynamically stable
solution [17]. Nevertheless, we have a conjecture that our results offer a good approximation
at least qualitatively because the same exponents of asymptotic learning curves%,l and
are also obtainable without using the replica method in a low-dimensional version of our
learning model.

This paper is organized as follows. In section 2, the problem is formulated and the
general properties of the generalization error are investigated. In section 3, the learning
curves are calculated in the framework of statistical mechanics. In particular, the asymptotic
behaviours of the solutions are investigated analytically. In section 4, we discuss the validity
of our RS solution. Section 5 is devoted to a summary.

2. Model

Hereafter, we assume that an arbitraiydimensional vectow is normalized aga| = +/N.
We consider a teacher perceptron with synaptic weightwhich has a non-monotonic
transfer function of reversed-wedge type parametrized by a non-negative number

T, (x) = sign(—x — a) sign(x) sign(x — a) (2.2)

where sigiix) is the function that returns the sign of argument For an N-dimensional
input vectorz, this machine returns the outputas

y = Tu(uo) (22)

whereug = wo - /v/N.

On the other hand, the student in this problem is a simple perceptron with synaptic
weight w. Following to a given set of exampled = {(x1, y1), (x2, y2), ..., (xp, yp)}
which are independently and uniformly drawn from tNedimensional spher§” centred
at the origin, this student adjusts in order to acquire the generalization ability. This
ability is measured by the generalization eregtw) which is the probability of making a
false prediction on a future example. Due to the assumption that the distribution of inputs
is uniform on SV, e(w) becomes a function of overlap between the two weighgsand
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w, R = wo - w/N. Note that in the limitN>>1, up = wo - /+/N andu = w - x/~/N
obeys a joint Gaussian distribution

PR(“O! Lt) =

u%—ZRu0u+u2:| 2.3)

1
27+/1— R2 p[ 1-R?

whenz is uniformly drawn fromS”. This enables us to calculate the generalization error
as

e(w) = e(R) = (O(=T,(uo) signw))) x

+00 +o00
- / dug / At Pr(utg. 1)[O(T, (10))O(—u) + O (— Ty (1)) O(w)]

0
= 2/ Dr Q(R; 1) (2.4)
—00

where (---)g represents the average over input vecior®(x) is the Heaviside's step
function which returns+1 for x > 0 and O otherwise, Dis the Gaussian measure
exp[-12/2]/+/2w, andQ(R; t) is a function defined as

QR 1) = /m Dz [@ (—\/1— Rz — Rt —a)—i—@(\/l— R +Rt)

70—0 ® (\/1 — R% + Rt — a)] . (2.5)

In figure 1, we plote(R) for several values of parameter This figure shows that
for a = oo, e(R) goes to zero wherR approaches 1. In contrast, far= 0, ¢(R) goes
to zero whenR approaches-1. This is easily understood because the teacher’s input—
output relation ofa = 0 is completely opposite to that of = co. Between these two
limiting valuesa = 0 anda = oo, ¢(R) exhibits a highly non-trivial behaviour. For

a=00 = !
a=2.0+ /!
. © a=l0=- %
08 ¢ a=0.5-= S
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0.6 P =N ' ‘/"II’ E
\‘ « . >4¢
—~ A N e T
& “._._______..--4" “s‘
EJ’ ’,.’/ Y
O . . %
04 b Pt . ‘. o]
R . M P
) /" 7
\\,,l’ /.,
e ;
/ : .
02+ o L
/ . .
/

IS U
-1 -08 -06 -04 02 o 0.2 0.4 0.6 0.8 1

R

Figure 1. Generalization error as a function of overl&p ¢(R), for several values of.
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a>aq =+/2log2= 117, ¢(R) is a monotonically decreasing function &fwhich takes
the non-zero minimum value & = +1. However, fora < a.q, ¢ is locally minimized at

_ |2log2—a?

and locally maximized at

2log2— a?
Ri(@) =+ /%92“ — R (a). 2.7)

Further, for O< a < a., = 0.8, e(R_(a)) < &(+1). Namely,e(R) is globally minimized

at R = R_(a). In figures 24) and ), we plot the global minimum value @f(R) and the

value of R which gives the global minimum as functions @f respectively. From these
figures, we find that fou > a.p, it is desirable for the student to find the teacher’s weight
wy. In contrast, for O< a < a., it is more desirable for the student to find a weight
w, which satisfies the conditiow, - wo/N = R_(a). This is a very interesting situation
because most of the previous works have mainly focused on the problem of how fast the
student finds ainique optimal weight.

3. Statistical mechanics

For the purpose of acquiring a good generalization ability, it is a natural learning strategy
to minimize the number of false predictions on the given set of exangdles

P
Elg") =) O(=y, - up) 3.1)
n=1

whereu, = w - x,/~/N. We call the learning algorithm following this strategy the
‘minimum error algorithm’. The cost function (3.1) is identical to that of Gardner and
Derrida [14] and the learning process of the minimum error algorithm is investigated through
their analytical method as follows.

From the ‘energy’ defined by equation (3.1), the ‘partition function’ with the inverse
temperatures is given by

Z(p) = /dw6(|w|2—N)exp[—ﬁE(w|§”)]

P

= /dw5(|w|2—N) [e_ﬁ—l—(l—e_ﬁ)@(yﬂ cuy)]. 3.2)
n=1

Minimization of E (w|£") corresponds to the limg — oo in Gibbs—Boltzmann distribution

and we focus on this limit hereafter.

3.1. Belowx,

Due to the storage ability of perceptrons, there remain some weights which completely
reproduce the input—output relations amayfy until the ratioa = P/N increases up to
some critical capacityr. even if the teacher’s relation is unrealizable. This enables us
to calculate the learning curve belaw by evaluating the logarithm of ‘Gardner—Derrida
volume’ Vgp = Z(00) through the formula

InVep _ (InZ(o0))er 1 im (Z"(co)her — 1
N N " N 10 n

(3.3)
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Figure 2. (a) The global minimum value of(R) as a function ofz. (b) R which globally
minimize ¢(R) as a function of.

where((- - -))¢» represents the average over the example §etZ” (co) is the simultaneous
partition function ofn-replicated systems sharing the same random varighlesd becomes
a function of order parameters

Wo * Wy
R, = 3.4
N (3.4)
w, *w
G =~ (35)
wherea =1,...,n andb =1, ..., n are the indices which represent replicated systems.
Under the RS ansatz
R,=R (3.6)
qab = 4 (37)

we can show (see appendix A) that the equation (3.3) is evaluated as

+o0 R . H . 1 q—R2
extir,q) {20(/;00 Dr Q <ﬁ .t) INE(g:t)+ éIn(l—q)+ 2(1—q)} (3.8)



Learning curves of unrealizable Boolean rules 129

whereQ (R : 1) is defined as equation (2.5) and

~+00

E(g:t) E/ Dz ®(/1— gz + /q1). (3.9
From the identities
d oo R 1 [t 02 [ R oF
A B ) < :t> F(r) = —/ Dr < :t) @ (3.10)
oR J_ Nz R J_ ot \/q ot
0 oo 1 [t 0B AF (1)
— DtE(g:t)F(t) = — D : 3.11
8qf_oo tE(g 1 F(1) Zq/_oo tat(q 1) o (3.11)

we find that equation (3.8) yields the following set of SP equations
oo Q g R?
Za/ Dr Q x (’) x (’) = (3.12)
o Q ) 1—¢g

oo 2\  qlqg—R?
Zoz/_oo Dr Q x (E) 1_ )2 (3.13)
where F, represents the abbreviation of the partial derivative of a funckionith respect
to 7. By solving the SP equations (3.12) and (3.13), we can investigate the learning process
below «,.

The critical capacity, is defined as a ratie = P/N at which overlapg becomes
1. Taking the limitg — 1 in the SP equations (3.12) and (3.13), we obtain a couple of
equations which determines as

0
—20, / Dr 1S (R, : 1) = R.? (3.14)
—00
0
2a, / Dt t°Q(R, ;1) = 1— R.? (3.15)

where R, is the value ofR at the critical capacity,.. Here, we have used the relation
& q

— 1O(—1) (3.16)
which is valid in the limitg — 1. o, and R, which are obtained from these equations are
plotted as functions of in figures 34) and p).

3.2. Beyondy,

The solution of equations (3.12) and (3.13) disappearsxfoer .. This reflects the fact

that beyondx, there is no weight which completely reproduces the input—output relations
amongé”. This makes the Gardner—Derrida voluiigy shrink to zero. Therefore, we can

not investigate the learning process by evaluating equation (3.3). Instead, the ‘free energy’

| Z P le P — 1
—f= lim (InZB)her _ im lim (Z"(B))e
B—00 Nﬂ B—o00n—0 nNﬂ
gives us a solution fotr > «..
{Z"(B))er also becomes a function of order parametBgsand g,,. Under the RS

ansatz equations (3.6) and (3.7), it can be shown (see appendix A) that equation (3.17) with
finite B8 is evaluated as

(3.17)

2
eXt{l’?,q}

+o0 — R2
ﬁ/_ DtQ(jq:t)lnEﬂ(q:t)+1In(1—q)+ R } (3.18)

B
o0 2 26(1-q)
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Figure 3. (a) a. versusa. (b) R, versusa.

where
Eslg:th=eP+L—-ePB(g:1). (3.19)

In the limit 8 — oo, a non-trivial result is obtained only when— 1 keepingx = 8(1—gq)
finite. Then, equation (3.18) becomes

0 2 1_ R2
extg 1) { - 20{/ Dt Q(R : 1) {@(—r —V2x) + %@(r + \/Z)” + } (3.20)
which yields the following SP equations
0
—2a/ Dr 1% (R : t) = R? (3.21)
—V2r
0
Za/ Dr?’Q(R:t) =1— R? (3.22)
—V2x

In the derivation of equation (3.20), we have used the relation

g’ fort < — M
q
Eplg 1)~ 1= . [28(1 — (3.23)
_ q,e—mfz for — 7’3( %) <t<0
J2mqt q

1 for0 <t

which is valid in the limitsg — oo andg — 1.

Before proceeding further, we mention the stability of the RS solution obtained from the
SP equations (3.21) and (3.22). Unfortunately, our RS solution becomes thermodynamically
unstable forx > «. (see appendix B). This results from a similar reason to that which Bouten
(1994) pointed out for a problem of storing random patterns in a perceptron [16]. Therefore,
we have to take the RSB into account in order to obtain a stable solution. However, it is
much involved to compute RSB solutions and such computation is beyond the purpose of
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this paper. Hence, here we only present unstable RS solutions hoping that they are still good
approximations and discuss their validity by comparing them with the results obtainable in
a low-dimensional version of the present problem in the next section.

By solving the SP equations (3.21) and (3.22), we found that the feature of the learning
is classified into the following five types depending @n

3.2.1. a = oo, 0 (realizable cases). The teacher becomes realizable foe= co because

the teacher is identical to the student wigh= 1 (w = wy). In addition, the teacher is

also realizable for = 0. This is because far = 0 its input—output relation is completely
opposite to that ofi = oo, which means the student witR = —1 (w = —wg) exactly
mimics the teacher. For these special valuea,af. becomes infinity and the learning is
described by equations (3.12) and (3.13) even in the limit- co. The solution of these
equations is thermodynamically stable and the learning curve is identical to that obtained
in a realizable problem [15, 18] which has the asymptote

e~ 0.6247 L. (3.24)

This is consistent with the universal scaling (1.1) observed in general realizable problems.

3.2.2. a > a,o ~ 1.53. In this parameter region, we found that the order paramgter
monotonically increases tpl ase — oo (figure 4@)). On the other hand; decreases from
+o00 to some value, and after that, approaches w’#@ in the limita — oo (figure 40)).

In order to investigate how fas®t and.x converge to these limiting values, we expand
equations (3.21) and (3.22) with small paramet&®® = 1 — R and Ax = a?/2 — x. This
yields the following equations

ae~/2 Ax (1— e /2

o H + V2AR | ~1 3.25
[ V2 (a«/ZAR) 2 (829
ARY?  q2e ) Ax

o + H ~ 2AR 3.26
|: V2 N 21 <av2AR>:| ( )

where H (x) = f;roo dr exp[-1?/2]/+/2r and these imply the following scalings

AR ~a~? (3.27)
Ax ~ (Ina)Y2e7L, (3.28)

From equations (2.4) and (2.5), we found the relation
e(l— AR) — e(+1) ~ O(ARY?). (3.29)

Note thate(+1) is the minimum value of(R) for this parameter region. Substituting
equation (3.27) into equation (3.29), we obtain the learning curve

& —éemn~a t (3.30)

which is identical to equation (1.2) discovered in the problem of learning disrupted by
output noise (figure 4{).
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Figure 4. Solution fora = 2.0. R, x, ¢ and f are plotted as functions af in (a), (b), (c)

and @), respectively. The inner graph af)(is consistent with the analytically obtained scaling

€ — Emin ™~ a L.

3.2.3.a,0 > a > a.1. A discontinuous transition from the poor generalization phase to the
good generalization phase is observed at O(1) in this parameter region. In figuresadi¢
(d), we plotR, x, f ande for a = 1.3 as functions ofx, respectively. We can observe
that there are three solutions for.%2< o < agp ~ 24.2. Fora < ayn ~ 14.7, the solution
which has the smallesk among the three has the lowest free energy and therefore is the
globally stable solution. A is increased beyondy, the solution which has the largest
R becomes the global minimum of free energy. Namely, a thermodynamic phase transition
takes place alv = ay. Nevertheless, the solution with the smalléstpersists until the
spinodal poiniyg, is reached. The solution with the middkeis the local maximum of free
energy and represents a unstable solution. A similar transition was also reported by Engel
and Reimer [13] in a problem where a non-monotonic perceptron learns the same type of
non-monotonic perceptron, although teacher’s rule is realizable in their problem.

In the limit @ — oo, R approachest1 which achieves the global minimum of the
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Figure 5. Solution fora = 1.3. R, x, ¢ and f are plotted as functions &f in (a), (b), (c) and
(d), respectively. The globally stable solution is plotted by heavy curves.

generalization error in this parameter region. The asymptotic behaviour of the learning
curve is identical to equation (3.30).

3.2.4.a.1 > a > acp. The discontinuous transition from the poor generalization phase to
the good generalization phase is observed as well as in the previous subsection. However,
the spinodal pointrs, becomes infinitye < a.1, which means that the quasistable solution
beyonday, persists even in the limik — oo.

This is easily understood by the following consideration. In thermodynamical systems,
physical quantities correspond to the minimum point of free energy which consists of
‘energy’ and ‘entropy’. In our system, the energy (3.1) increases wijtlalthough the
effect of entropy in free energy is not proportionaldo Therefore, in the limitv — oo,
it is expected that properties of the system are determined almost only by energy. As a
result of the central limit theorem, energy is nearly proportional to the generalization error
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e(R) for « > 1. This implies thatR obtained from the SP equations (3.21) and (3.22)
in the limit @« — oo are identical to the extreme points ofR). Fora > a., R =1
is the unique minimum point of (R). Hence, other solutions of the SP equations should
disappear as& — oo even if they exist fore ~ O(1), which explains whyws, is finite
for a.1 < a < a.. On the other hand, fofi., < a < a.1, e(R) has two extreme points
R = R_(a) and R = R, (a) besidesR = 1 which remains the global minimum @fR).
This suggests that the SP equations have three solutions in thexlimito corresponding
to the three extreme points efR), i.e. R = 1, R_(a) and R (a), which means thatsp is
infinity.

The solutions fora = 1.0 are plotted in figures &)—(d). In these figures, we find
three solutions which all persist in the limit— oco. One solution (solution (l)) starts from

a) b)
' ' ' ’ 4
1 <o
0.5
& Rl
o NG 2
-0.5]

-10 20 40 60 80 100

o
c) d)

50
0.5 ey 7T : a0l
047 . ~ _

30

0.3 ] =~
20}

0.2

0.1] - 10]

Oo 20 40 60 80 100 00 20 40 60 80 100
o o

Figure 6. Solution fora = 1.0. R, x, ¢ and f are plotted as functions &f in (a), (b), (c) and
(d), respectively. Globally stable solution is plotted by heavy curves.
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a. = 2.05 and reaches the local minimum afR) as

. R — R_(a)
solution (1) (3.31)
x—>0
in the limit o« — oo.
On the other hand, two other solutions emerge at 16. One of them (solution (11))
approaches to the local maximum «fR) as
R — R
solution (11) { +@) (3.32)
x—>0
in the limit « — oco. This solution corresponds to the local maximum of free energy and
therefore unstable. The last one (solution (lll)) is another (local) minimum of free energy
approaching to the global minimum efR), R =1 as

R—1
(3.33)

x — a?/2

solution (l11) !

in the limit « — oo.

Fora < aw ~ 47, solution (1) is the global minimum of free energy. Asincreases
beyondq,, solution (1) becomes the global minimum of free energy, which means that a
thermodynamical transition from solution (1) to solution (lll) takes placegt Hence, we
obtainR — 1 asa — oo, which achieves the global minimum etR) for this parameter
region ofa. The asymptotic learning curve of this solution obeys the same power law as
equation (3.30).

In addition to the globally stable solution (IlI), we now have a locally stable solution (I)
in the limit @ — oo. R of this solution approache®_(a) which locally minimizes
e(R). In order to investigate how fast and x converge as equation (3.31), we expand
equations (3.21) and (3.22) with small parameta® = R — R_(a) andx. After some
algebra, we obtain the following equations

Qi (R_ :
za”’(—(a)zo)ARx ~ R_(a)? (3.34)
V2rR_(a)
2 X 1 2 3.35
.~ — R_ .
a3ﬁ (a) ( )
which suggest the scalings
AR ~ o713 (3.36)
x ~a 3 (3.37)

In figures 7&) and ), we plot asymptotic behaviours &R and x as functions of,
respectively, which are consistent with the scalings of equations (3.36) and (3.37).
From equations (2.4) and (2.5), it is found that the relation

e(R_(a) + AR) — e(R_(a)) ~ O(AR?) (3.38)
holds for smallA R. Substituting equation (3.36) into equation (3.38), we obtain the scaling
& — &.min ™~ 05_2/3 (339)

where ¢, min = €(R_(a)). It should be remarked that this scaling form is identical to
equation (1.3) discovered in the problem of learning disrupted by input noise, although
&1.min IS Not the global but the local minimum of generalization error (figui®)6(
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Figure 7. Asymptotic behaviour of the quasistable solutiondo= 1. AR = R— R_(a) andx
are plotted as functions af in (a) and p), respectively. These graphs are consistent with the
analytically derived scalinga R ~ o«~1/2 andx ~ «=%/3.

3.2.5. a;2 > a > 0. In this parameter regiorg(R) is minimized not atR = 1 but at

R = R_(a). As a result, solution () obtained in section 3.2.4 remains the global minimum
of free energy untie — oco. Namely, the thermodynamic transition from solution (I) to
solution (111) disappears and the learning curve decays smoothly to its minimum as

& — emin ~a 23 (3.40)

whereegmin = e(R_(a)) is the minimum value of (R) in this parameter region (figurese§¢
(d)).

Remark that equation (3.40) suggests that the exponent of learning curve in the limit
a — 0 is different from that ol = O (realizable case) in equation (1.1). In contrast, as for
the other realizable case= oo, the exponents of learning curves tor> oo are the same
as that ofa = co. This implies that non-monotonic teacher with smalis more difficult
for a simple perceptron to learn than that with large

4. Discussion

In this section, we discuss the validity of the results obtained under the RS ansatz in the
previous section. First, we comment about the critical values, dfe. a.o, a.1 and a.;.
a.o ~ 1.53 is the point below which a discontinuous transition appears in the learning
curve. This value is intrinsic of the RS ansatz and therefore will be changed if we proceed
to RSB calculations. However, we conjecture that which is defined as the point below
which asp becomes infinity, and,,, which is defined as the point below whiak, becomes
infinity, will be unchanged by RSB calculations because they result from changes in the
shape ofs(R) which is independent of the ansatz on the replica calculations.

Secondly, we mention the critical values @f i.e. o, an andasp. o, is the point at
which ¢ — 1. In our case, this value is identical &7 beyond which the RS solution
becomes unstable (see appendix B). Therefore, this is invariant if we take the RSB into



Learning curves of unrealizable Boolean rules 137

a) b)
' ' ‘ 1

< 6?5"

el N

-10 20 40 60 80 100 Oo 20 40 60 80 100

o o

c) d)

1 100
0.9 I
0.8] 1 80] e
0.7] pmmmTTITTTTT ] o
0.6] ' 60/
w0.5 i Sy /,
04\ ' 40}
0.3
0.2] 1 20]
0.1] ]

O 20 40 60 80 100 % 20 40 60 80 100

o o

Figure 8. Solution fora = 0.5. R, x, ¢ and f are plotted as functions ef in (a), (b), (c) and
(d), respectively. Globally stable solution is plotted by heavy curves.

account. Howevergy, and asy will be changed by RSB calculations because they are
intrinsic of the RS solution.

Finally, we discuss the asymptotic behaviours of learning curves. In the previous section,
we found two types of asymptotic learning curves with exponents 1§aium unrealizable
cases. Although they are unstable RS solutions, the two exponents %, amedconsistent
with those obtainable without using the replica method in a two-dimensional version of the
present problem as follows. This suggests that our results are good approximations even if
they are not exact.

Let us consider the following two-dimensional learning problem. In this problem, the
teacher is a two-dimensional non-monotonic perceptrons with the weighkt (w°;, w%)
which returns output

y = T,(wg - x) (4.1)
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Figure 9. The two-dimensional learning problem. From the two-dimensional nature of the
problem, the system is specified by a single paramgter

for two-dimensional inpute. Here, 7,(x) is defined as equation (2.2) and it is assumed
that |wg| = 1. On the other hand, the student is a two-dimensional simple perceptron with
weightw = (w1, wy). In order to acquire a good generalization ability, this student learns
from a given set of examples” = {(x1, y1), (z2, ¥2), ... (xp, yp)} Which are assumed

to be independently and identically drawn from the two-dimensional Gaussian distribution
expl[—(x12 + x22)/2]/(2n), following the error minimum algorithm (figure 9).

From the two-dimensional nature of the problem, the system can be specified by a
single parametep which is the angle betweew, andw. In figure 10, we plot the number
of false predictions on a realization g, Ep, versus¢ together with its expectation
(Ep(¢p)) = P x e(¢) for a = 0.5. Here,e(¢) is the generalization error as a functiongaf
In the figure, we only plot the graphs for positigebecause these graphs are statistically
symmetric under the reverse operatipr> —¢.

From this figure, it is found thak'p(¢) is minimized aroundp) = 0, which globally
minimizese(¢). At the same timeEp(¢) is locally minimized around = ¢, ~ 2.3[rad],
which is the local minimum point of(¢). Let us estimate how these (local) minimum
points fluctuate aroung = 0 or ¢ = ¢, by the following consideration. A similar method
was once applied to explain the asymptotic learning curve of a stochastic learning problem
[19].

Ep(¢) is the number of examples which satisfy the condition that= 1 and
worx, <0ory, =—-1andwg-x, >0 =12 ..., P). First, we evaluate how the
expectation ofEp(¢) increases aroung = 0, and¢ = ¢,. From figure 10, we find that
this increases as

(Ep(¢) — Ep(0) ~ P x || (4.2)

aroundg = 0. On the other handEr (¢)) quadratically increases around the local minimum
¢ = ¢*, as

(Ep(¢) — Ep(9)) ~ P x (¢ — $.)°. (4.3)
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Figure 10. Ep(¢) for a realization of an example sef’ = {(z1, y1), (z2, y2), . . ., (xp,yp)}.
This graph is fora = 0.5 and P = 100. The broken curve represents the expectation
(Ep(¢)) = P x e(¢p), wheree(¢) is the generalization error faf.

Next, we estimate the fluctuation of equations (4.2) and (4.3). Suppaseves from
¢ = 0 to ¢ = wfrad]. Every time the decision boundary af comes across an input,
(1 < u < P), Ep(¢) increases or decreases discontinuously by 1. Arabire 0, Ep(¢)
almost always increases because positive and negative examples are clearly separated around
the boundarywg - = 0. This means that the fluctuation of equation (4.2) is very small and
the minimum point fluctuates of the order #f ' which is a rough estimate of the width
between two neighbouring examples. Therefore, we obtain

& — emin ~ &(¢) — (0) ~ |p| ~ P71 (4.4)

which has the same exponent 1 as that of equation (3.30).

In contrast,E p(¢) increases or decreases almost randomly arguadg,. This motion
of Ep(¢) is analogous to that of a ‘random walk’ if we regapdas ‘time’. From this
analogy, we obtain the following relation with respect to the fluctuation of equation (4.3)

A(Ep(@) — Ep(d:) ~ P X |§ — ¢ul. (4.5)

The balance between equations (4.3) and (4.5) determines the fluctuation of the (local)
minimum point of E»(¢) around¢ = ¢,. This gives the scalingp — ¢.| ~ P~/3, which
yields the learning curve

€ — &1 min ~ &(p) — &(s) ~ (¢ — p)2 ~ P23 (4.6)

which shares the same expon%nwlvith equations (3.39) and (3.40).

In order to confirm the above discussion, we performed numerical experiments for
a = 1.0 (largea) where¢ = 0 is the global minimum ot (¢), and fora = 0.1 (smalla)
where¢ = ¢, = 2.99[rad] globally minimizes (¢). The numerically obtained data exhibits
the following behaviours. As the number of examplesncreases, the parameter obtained
by learning converges to the global minimumegf), namely, to 0 fora = 1.0 and tog,
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Figure 11. Average ofs — emin versus the number of examplésfor ¢ = 1.0 and 01. The
lines were drawn by the least-square fit under the assumptiemmin ~ P~". The obtained
exponents ar¢ = 1.01+0.01 fora = 1.0 andy = 0.68+0.02 fora = 0.1, which are in good
agreement with our theoretical predictiops= 1 and%.

for a = 0.1. The average generalization ereotaken over 1000 sets of examples is plotted
in figure 11. This figure indicates scaling relatians emin ~ O(P~7) for both cases. The
exponents obtained from the least-square methodyate 1.01 + 0.01 for a = 1.0 and

y = 0.68+ 0.02 for a = 0.1, which are highly consistent with our theoretical predictions
y = 1 for largea and% for smalla.

5. Summary

In this paper, we have studied the learning process of a simple perceptron which learns
an unrealizable Boolean rule represented by a perceptron with a non-monotonic transfer
function of reversed-wedge type. This type of non-monotonic perceptron is considered as a
variant of multilayer perceptron and is parametrized by a single parameReflecting the
non-monotonic nature of the target rule, it was found that a discontinuous transition from
the poor generalization phase to the good generalization phase takes place when the number
of examplesP is relatively small compared with that of synaptic weightfor intermediate
values ofa. We also found that asymptotic learning curves are classified into the following
two categories depending en For largea, the learning curve obeys the scaling relation
with exponent 1. On the other hand, the learning curve with expogle'etobtained for

small a. These exponents are the same as those found in learning from noisy examples
[2, 3]. Therefore, we conjecture that these types of learning curves generally appear in
learning of unrealizable Boolean functions independent of the cause of unrealizability.
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Appendix A. Calculation of (In Z(8))).»

In this appendix, we derive equations (3.3) and (3.18) by the replica method. Under the RS
ansatz (3.6) and (3.7%Z"(B))) ¢+ is evaluated by the SP method with regardRt@ndqg as

(Z"(B)Ner = €Xtig g { / l_[dw“ Hé(wa -w, — N) 1_[5(1170 -w, — NR)
a=0 a=1 a=1

n P
X H(S(wa cwp — Nq)<<l—[ l—l[eﬂ3 +(1- e*ﬁ)(a(yﬂ . uaﬂ)]»gp}

a>b a=1p=1
= exXtg  {Ao(R,q :n) x A1(R,q, B : n)} (A1)

Uy = wi/.‘szﬂ (A.2)

In the last line of equation (A.1), we defineth(R, g : n) and A1(R, q, B : n) as

Ao(R,q i n) = /ﬁdwaﬁé(wa cw, — N)ﬁS(wo-wa - NR)H(S(wa -w, — Ngq)
a=0 a=1 a=1

a>b
(A.3)
and
n P
A1(R.q. B :n) = <<1"[ [[le?+a-ehho,- uau>]>> (A.4)
a=1p=1 gr
respectively.
By using the usual SP methodg(R, g : n) is evaluated as
g — R2 N/2
AO(R,q:n)=[<1+n g ) x(l—q)"i| (A.5)

except for a numerical factor [20]. Next, we evaluatgR, ¢, 8 : n). Since it is assumed
that eachz, (» = 1,2...P) is drawn independently and iteratively from an identical
distribution, the average with respect&6 in equation (A.4) is replaced by the product of
the averages

([T +a-eme0w) (A6)
a=1

(s yu)

whereu = 1,... P. These averages are independent of indeand therefore we drop
in the evaluation of equation (A.6) hereafter. For an inputhe ‘probability’ thaty = 1
is returned by the non-monotonic teacher is

P(y=+1|:c)=®<—w°'$ —a) +®<w°'w> —@(w"'w —a>
VN VN VN
= 0O(—ug—a) + Ouo) — Ouo — a)
—1-P(y=—1z) = P(y = —1| — @). (A7)
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By taking the average with respect tofirst in equation (A.6) using equation (A.7) and
taking the symmetry between and —x into account, we obtain

<<2[®(—uo —a) + O(ug) — Oug — a)] ]—[[eﬂ8 +1- eﬁ)®(ua)]>> ) (A.8)
xr

a=1

It should be remarked that under the RS ansatz (3.6) and {&.7%)y, . ..u, become a
set of joint Gaussian random variables which satisfy the condition

(g ~up) = A —q)ap +q fora,b=1,...,n (A.9)
(o~ ugs) = R fora=1,...,n (A.10)
(o) =1 (A.11)

whenz is uniformly drawn fromS”. Here, (- --) stands for the statistical average -of.
These joint Gaussian random variables are represented explicitly -by2 independent

Gaussian random variables (a =0, 1, ..., n) andt which satisfy the condition
(Za * 2b) = Sup fora,b=0,1,...,n (A.12)
(t-z4) =0 fora=0,1,...,n (A.13)
=1 (A.14)
as
ug =+/1—qz, + J/qt fora=1,...,n (A.15)
R? R
up=,/1- ?ZO—FEI. (A.16)
Substituting equations (A.15) and (A.16) into equation (A.8) and taking the average
with respect taz, (a =0, 1,...,n) andz instead ofx, we obtain

<< i[l[e"’ +1-ef)o(- ua)1>>($’y)
:2/[),[/%[@(_@@_%_@
sl ) -o(- e )]

x L[l/ Dz, [e*’3 +1-eho (ﬂza + ﬁt)]

= 2] DrQ (jﬁ : t) {Ep(q - )}" (A.17)
which means
R P
A1(R,q,B:n) = [2/ Dt Q (ﬂ : t) {Ep(q : t)}"] . (A.18)

For smalln, equations (A.5) and (A.18) are expanded with respeet &3

2

CN 1— _ qg—R 2
Ao(g,R:n)~14+nx N x |:2|n(l q) + 2(1_q):| + O(n*) (A.19)
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and
R
A1(g,R,B:n)~1+nx2P x |:/ DrQ (f : t) InEp(q : t)}i| +O(n?) (A.20)
q

respectively. From these, we obtain

(InZ(B))sr
N

= 20 [Dra (B 1) ingsq: 0+ Sina q - K
_eXt{R’q}{ Ol/ t <ﬂl)nuﬂ(qt)+2 n( —q)+2(1_q)}

(A.21)
which yields equations (3.3) and (3.18).
Appendix B. Stability of the RS solution

Here, we show that our RS solution is unstable dot «.. The Almeida—Thouless (AT)
stability for the RS solution is judged by the following quantity for any temperature [21, 16],

A3 = Ot)»g)::; -1 (Bl)
where
2 R 92 2
rA=— [ DiQ —:t) | -5INEs(g:¢t B.2
o=/ (ﬁ ) [szmsta 0] (8:2)
ra=1—¢)> (B.3)
From equation (3.23), we obtain the following relation for the RS solution
-8B fort < —v/2x
INEs(q : 1) ~ —%tz for —v/2x <t <0 (B.4)
0 forO< ¢
wherex = 8(1 — q), wheng is large and 1- g is small. This yields the relation
2 \/5 1
S5 INEs(q ) ,8|: ;8(t+\/2x)—;(® (t+\/2x)—®(t))j| (B.5)

which means that\; is calculated as

As= 2ax2/ QR : 1) [\/fa (z + JZ) - ; (@ (z + @) - @(r))}2 ~1 (B.6)

in the limit 8 — oco. This diverges to infinity unless is infinite because the right-hand

side of equation (B.6) includes a term suchsadg + +/2x) in the integral. Forx > a, x

of our RS solution is finite, which means that this solution is thermodynamically unstable.
We should mention thah; becomes 0 ar = «.. Namely, the RS solution loses the

AT stability just at «.. This is explained as follows. By partially integrating the left-hand

side of equation (3.15), we obtain

0
2aC/ D[R, : 1) + 1 (R. : )] =1 — R.2. (B.7)

o0

Adding equation (3.14) to this equation, we obtain the following relation &t c.

0
Zozc/ Dt Q(R.:t) =1 (B.8)

oo
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Note thatx = oo at@ = .. Then, the right-hand side of equation (B.6) becomes

0
Zac/ DrQ(R.:t) — 1. (B.9)

(o]

From equation (B.8), this means thag = 0 ata = «..
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